

Lecture Scope

- Static strength of welded joints

- need for strength design
- types of loads carried by welds
- effective weld area
- stresses acting on weld area
- allowable stresses on welds
- design of weld groups

(

.

p 9

Design Stresses on welds

- IW/ISO criterion for fillet weld stresses
 - The International Institute of Welding has published the following criterion (see IIW doc XV-358-74 & Welding in the World article Vol 2 No 2 1964.)
 - adopted by ISO as recommendation R617

$$\sigma_a \geq \beta \sqrt{\sigma_{\perp}^2 + 3(\tau_{\perp}^2 + \tau_{\parallel}^2)}$$

 $\sigma_a \geq \sigma_{\perp}$

=

 σ_a

allov/able stress in the base material

 $\beta = 0.7$ for structural steels up to 500 MPa UTS and 0.85 for high-strength steels with UTS <= 600 MPa

(

Í

Design Stresses on Welds

- AWS D1.1 standard approach for fillet/partial penetration welds in steel structures
 - Defines allowable values for each stress component based (primarily) on weld metal tensile strength
 - CSA W59 uses a similar approach but differs in detail
 - Always consult the applicable standard

/S D1.1	
ull Fenetration Welds	S
Stress in Weld	Allowable Stress
Tension or compression normal and parallel to effective area	Same as base metal
Tension or compression parallel to axis of weld	Same as base metal
St ear on the effective area	0.3 of nominal UTS of weld metal, but not more than 0.4* yield strength of base metal

-

_ .

- ----

_ _

Design Stresses on Welds

AWS D1.1

(

- Partial Penetration Groove Welds

Stress in Weld	Allowable Stress
Compression nc rmal to effective area (joints not designed to bear)	0.5 times nominal tensile strength of weld metal but not more than 0.6 times yield strength of base metal
Tension or compression parallel to weld axis	Same as base metal. Need not be considered in design of welds joining components of built-up members
Shear parallel to axis of weld	0.3 nominal tensile strength of weld metal but not more than 0.4 yield strength of base metal
Tension normal to effective area	0.3 nominal tensile strength of weld metal but not more than 0.4 yield strength of base metal

p 14

Design Stresses on Welds

AWS D1.1

- Fillet Welds

Stress in Weld	Allowable Stress
Compression normal to effective area (joints not designed to bear)	0.5 times nominal tensile strength of weld metal but not more than 0.6 times yield strength of base metal
Tensior or compression parallel to weld axis	Same as base metal. Need not be considered in design of welds joining components of built-up members.
Shear parallel to axis of weld	0.3 nominal tensile strength of weld metal but not more than 0.4 yield strength of base metal
Tension normal to effective area	0.3 nominal tensile strength of weld metal but not more than 0.4 yield strength of base metal

والمعرب المتحد والمراجع

Example

AWS Approach:

Weld effective area = 2*6*0.707*L = 8.5LFrom statics, the applied stress = P/A = 50000/8.5L MPa Stress is shear parallel to weld axis

AWS D1.1 allowable stress is minimum of: 0.3*weld metal UTS = 0.3 * 410 = 123 MPa 0.4* base metal yield strength = 0.4* 250 = <u>100 MPa</u>

Therefore P/A <= 100 MPa i.e. 50000/8.5L <= 100 MPa L >= 58.8 mm

Specify 60mm long fillets.

-

Example

(

IIW Approach:

$$\sigma_a \geq \beta \sqrt{\sigma_\perp^2 + 3(\tau_\perp^2 + \tau_l^2)}$$

Weld effective area = 2*6*0.707*L = 8.5LApplied stress P/A = 50000/8.5L MPa = τ_{\parallel}

Assume the allowable stress in the base material $\boldsymbol{\sigma}_{a}$ is the lesser of

0.33 * ultimate strength = 0.3*410 = <u>123 MPa</u> 0.67* yield strength = 0.67*250 = 167 MPa

Then,

123 >= 0.7* √3*(50 00/8.5L)^2

L >= 57.98 mm (a grees with AWS)

- In the previous example, the force carried by the welds were determined by applying the principles of static equilibrium
- The forces carried by welds in more complicated connections cannot be so easily determined
- Various methods have been proposed to determine the capacity of the weld group
 - Mostly empirical rules
 - Either elastic or plastic analyses

Weld Stress Distribution

Qualitative behaviour

- L2 >> L1, W3 not present: the load is carried by W2
- L2<L1, W3 not present, the load is carried mostly by W1
- When W3 is present it takes most of the load
- The case of L2<1.5*L1 with W3 present is considered useless

Weld Groups

Derivation

Assuming:

(

- The welds are of equal size S
- The force per unit length F at any point in the weld group is proportional to the distance from the centroid C, i.e. F = kr.
- F acts normal to the line joining the centroid
- residual stresses are negligible

Weld Groups

If dL is any elemental length of weld,

$$M = \int Fr dL$$

Since $F = kr$, $M = \int kr^2 dL = kJ_w$

Where J_w is the linear polar moment of inertia of the weld group about the axis through C and normal to the plane.

Hence:

$$F = \frac{Mr}{J_{w}}$$

The weld throat T required to satisfy allowable stress limits can be found using:

and the second second

.

$$F = \tau T$$

_. ___

Weld Groups

ŧ

- Similar results apply for bending moments parallel to the plane of the weld group.
- Shear forces are assumed uniformly distributed

Example 2

Step 1: Identify the most highly stressed location The point of maximum combined unit force is at the top right hand corner Step 2: Determine unit forces at this point The distance from the centroid to the point of combined stress, and the polar moment of inertia are given by the table (handout) as:

$$c_{yr} = \frac{b(b+d)}{2b+d} = 95 mm$$

$$J_{w} = \frac{b^{3}}{3} + \frac{(b+2d)}{2b+d} + \frac{d^{2}}{12} (6b+d) = 6.3 \times 10^{6} \text{ mm}^{3}$$

Example 2

(

Step 2 (cont'd)

- The horizontal and vertical components of the twisting moment are given by:

$$f_h = \frac{Td/2}{J_w} = 410 \ \text{N/mm}$$
$$f_v = \frac{Tc_{yr}}{T_w} = 306 \ \text{N/mm}$$

$$J_{\mathcal{V}} = \frac{J_{\mathcal{V}}}{J_{\mathcal{W}}} = 300 \text{ N/m}$$

- The vertical shear force is fs = P/Lw = 158 N/mm

.

 			 		 	 	 	 		<u> </u>	
				·	 	 					
		_	 								
 <u>u</u>			 <u> </u>		 	 	 	 	··		
 			 		 	 	 	 		_	
 			 		 	 	 	 			·
 . <u> </u>			 		 · 	 	 <u> </u>	 			·`
 			 		 ······································	 		 			
			·								
 	<u> </u>		 		 	 		 			
 			 		 <u> </u>	 	 	 			· • • •

.....

Hyatt Regency Skywalk Failure

·	 	
	 	 ······
 ·	 	
 -		
 ·		

Weld Structural Failures

- Failures of welded structures result in financial loss, damage to the environment, and injury or loss of life
 - Hyatt Regency hotel walkway collapse
 - Ramsgate ferry ramp collapse
- Codes and standards define rules for welded joint design for various types of critical structure, e.g. buildings, bridges, pressure vessels based on tests, analysis and experience
- Use of the applicable codes is advisable and may be legally required.